• Kayıt
Merhaba sayın ziyaretçimiz; sayfamıza hoşgeldiniz. Sayfamıza üyelik gerekmeksizin soruları görüntüleyebilirsiniz ve yine soru sormak, cevap yazmak, yorum yapmak ve oylamaya katılmak için ise hızlı ve çok kolay ve ücretsiz bir şekilde üyelik işlemlerinizi gerçekleştirebilirsiniz. Sizi de paylaşım kervanımızda aramızda görmek için sabırsızlanıyoruz.

İlgili sorular

0 oy
0 cevap 18 kez görüntülendi
18 kez görüntülendi 25, Mart, 2022 Bilgisayar Ağları kategorisinde ii5620op (120 puan) tarafından soruldu
0 oy
0 cevap 16 kez görüntülendi
16 kez görüntülendi 14, Ocak, 2022 Bilgisayar Ağları kategorisinde yyt452qq (120 puan) tarafından soruldu
0 oy
0 cevap 50,202 kez görüntülendi
50,202 kez görüntülendi 15, Ekim, 2021 Bilgisayar Ağları kategorisinde ccisk441d (300 puan) tarafından soruldu
0 oy
0 cevap 17 kez görüntülendi
17 kez görüntülendi 14, Şubat, 2022 Bilgisayar Ağları kategorisinde uui5633a (120 puan) tarafından soruldu
0 oy
0 cevap 273 kez görüntülendi
273 kez görüntülendi 15, Ekim, 2021 Bilgisayar Ağları kategorisinde ccisk441d (300 puan) tarafından soruldu

En popüler etiketler

8,391 soru

122 cevap

4 yorum

2,849,569 kullanıcı

Hoş geldiniz, Netyuvam S&C sizelere sorularınızın diğer kullanıcılarımız tarafından cevaplanması için bir ortam sağlar.

How Does Touch Screen Technology Work?

0 oy
17 kez görüntülendi

 

If you’re old enough to remember 1990, that’s the year MC Hammer released his signature, Grammy-nominated song “U Can’t Touch This.” Hammer may have looked great rapping in parachute pants but he wasn’t that great at prognosticating. Within 15 years people were indeed touching it . . . and they were about to touch it a whole lot more after 2007, once Apple released its groundbreaking iPhone, the first handheld device ever shipped with a multi-touch display. Today, the appetite for high-quality interactive displays has spawned a massive industry with sales by 2018 expected to reach $31.9 billion. Though the display-user interface is now ubiquitous and so intuitive that even infants seem to know how to swipe left and right, we sometimes forget how truly revolutionary and disruptive this technology was when it was introduced.

 

Touch-device shipment and revenue will continue to rise year over year, peaking in 2019, according to market-data insight firm IHS DisplaySearch. Some touchscreens employ pressure sensors to detect contact, while some use visible or infrared light, and still others use sound waves. The broad range of environments and conditions under which the displays are deployed has required designers and manufacturers to get creative. Let’s take a look at some of the different types of touch technology, how they function, and what their advantages are in terms of reliability, durability, accuracy, size, number of touch points and, of course, cost.

 

Resistive Touch Screen

Resistive touchscreens are the most common and cost effective. Applications best suited to this pressure-sensitive technology are industrial, human-machine interfaces with zero tolerance for error. Because the surface responds only to direct pressure, it means users are less likely to register a false touch. The display functions well in high-traffic or rugged environments where there’s moisture or even debris, and it can independently work as LCD advertising player. And you can use it with gloves or a stylus, which makes it perfect for mining, petroleum, manufacturing, construction, and laboratory applications. Note the two types of resistive touchscreens: soft and hard surface. The soft display bears a flexible top layer of plastic ITO (indium tin oxide) film affixed over a layer of glass. In between is a crosshatch of electrode sensors that form a grid of X- and Y-axis touch points. The hard-surface display is similar but for a grid that’s sandwiched between two panes of glass, usually bezeled around the perimeter. It’s a cost-efficient technology but there are some downsides, too. Number one, the grid is an analog technology that drifts, requiring periodic recalibration. Second, the ITO film can wear and crack over time. And, finally, the screen can be difficult to read under bright light, where the image quality suffers.

 

Projected Capacitive Touch Screen

Unlike resistive touch, which relies on pressure, projected capacitive touch screens rely on shifting electrical charges instead of moving parts. If you’ve ever worn socks on carpeting in winter then touched a metal object and gotten a shock, you’ve experienced electrical capacitance. PCAP technology involves two conductive layers that create an electrostatic field, which transfers energy when contacted. One of the key benefits is its ability to process multiple touch points simultaneously. Another great thing is, by eliminating the layers of film and glass PCAP offers near-perfect optical clarity and performance. It’s one of the main reason so many smart phones use it. It tends to be more expensive than resistive touch but its optical clarity, power efficiency and aesthetics have made it the go-to technology for tablets and phones. Because its images are accurate and contrast ratios high, it’s also popular in medical imaging and other industries where an onscreen blotch or defect could lead to catastrophic results. An optional ‘optical bonding’ feature recommended by Premio, which eliminates air and moisture between the layers, makes for an even clearer and more rugged display that withstands shocks and vibrations. A downside is PCAP’s susceptibility to ‘noise’ generated by electromagnetic interference (EMI). Because the display must be finely calibrated to ignore nearby EMI noise, users have to operate PCAP with a finger rather than fingernail, gloved finger or stylus.

 

31, Ağustos, 2021 Bilgisayar Ağları kategorisinde xxkop148s (200 puan) tarafından soruldu

Bu soruya cevap vermek için lütfen giriş yapınız veya kayıt olunuz.

...

A Question2Answer database query failed when generating this page.

A full description of the failure is available in the web server's error log file.