• Kayıt
Merhaba sayın ziyaretçimiz; sayfamıza hoşgeldiniz. Sayfamıza üyelik gerekmeksizin soruları görüntüleyebilirsiniz ve yine soru sormak, cevap yazmak, yorum yapmak ve oylamaya katılmak için ise hızlı ve çok kolay ve ücretsiz bir şekilde üyelik işlemlerinizi gerçekleştirebilirsiniz. Sizi de paylaşım kervanımızda aramızda görmek için sabırsızlanıyoruz.

İlgili sorular

0 oy
0 cevap 18 kez görüntülendi
18 kez görüntülendi 18, Ekim, 2021 Bilgisayar Ağları kategorisinde bbig4694d (260 puan) tarafından soruldu
0 oy
0 cevap 22 kez görüntülendi
22 kez görüntülendi 14, Ekim, 2021 Bilgisayar Ağları kategorisinde aahhn1479b (300 puan) tarafından soruldu
0 oy
0 cevap 31 kez görüntülendi
31 kez görüntülendi 7, Eylül, 2021 Bilgisayar Ağları kategorisinde Helengriffin (340 puan) tarafından soruldu
0 oy
0 cevap 23 kez görüntülendi
23 kez görüntülendi 27, Ekim, 2021 Burçlar & Fallar kategorisinde suc11cess (300 puan) tarafından soruldu
0 oy
0 cevap 16 kez görüntülendi
16 kez görüntülendi 19, Ekim, 2021 Aile kategorisinde xcdsdedd (300 puan) tarafından soruldu

En popüler etiketler

8,391 soru

122 cevap

4 yorum

2,849,569 kullanıcı

Hoş geldiniz, Netyuvam S&C sizelere sorularınızın diğer kullanıcılarımız tarafından cevaplanması için bir ortam sağlar.

How Electric Motors Work

0 oy
15 kez görüntülendi

Flick a switch and get instant power—how our ancestors would have loved electric motors! You can find them in everything from electric trains to remote-controlled cars—and you might be surprised how common they are. How many electric motors are there in the room with you right now? There are probably two in your computer for starters, one spinning your hard drive around and another one powering the cooling fan. If you're sitting in a bedroom, you'll find motors in hair dryers and many toys; in the bathroom, they're in extractor fans, and electric shavers; in the kitchen, motors are in just about every appliance from clothes washing machines and dishwashers to coffee grinders, microwaves, and electric can openers. Electric motors have proved themselves to be among the greatest inventions of all time. Let's pull some apart and find out how they work!

The link between electricity, magnetism, and movement was originally discovered in 1820 by French physicist André-Marie Ampère (1775–1867) and it's the basic science behind a Ac motor. But if we want to turn this amazing scientific discovery into a more practical bit of technology to power our electric mowers and toothbrushes, we've got to take it a little bit further. The inventors who did that were Englishmen Michael Faraday (1791–1867) and William Sturgeon (1783–1850) and American Joseph Henry (1797–1878). Here's how they arrived at their brilliant invention.

 

Suppose we bend our wire into a squarish, U-shaped loop so there are effectively two parallel wires running through the magnetic field. One of them takes the electric current away from us through the wire and the other one brings the current back again. Because the current flows in opposite directions in the wires, Fleming's Left-Hand Rule tells us the two wires will move in opposite directions. In other words, when we switch on the electricity, one of the wires will move upward and the other will move downward.

 

If the coil of wire could carry on moving like this, it would rotate continuously—and we'd be well on the way to making an electric motor. But that can't happen with our present setup: the wires will quickly tangle up. Not only that, but if the coil could rotate far enough, something else would happen. Once the coil reached the vertical position, it would flip over, so the electric current would be flowing through it the opposite way. Now the forces on each side of the coil would reverse. Instead of rotating continuously in the same direction, it would move back in the direction it had just come! Imagine an electric train with a motor like this: it would keep shuffling back and forward on the spot without ever actually going anywhere.

 

How an asynchronous motor works—in practice

There are two ways to overcome this problem. One is to use a kind of electric current that periodically reverses direction, which is known as an alternating current (AC). In the kind of small, battery-powered motors we use around the home, a better solution is to add a component called a commutator to the ends of the coil. (Don't worry about the meaningless technical name: this slightly old-fashioned word "commutation" is a bit like the word "commute". It simply means to change back and forth in the same way that commute means to travel back and forth.) In its simplest form, the commutator is a metal ring divided into two separate halves and its job is to reverse the electric current in the coil each time the coil rotates through half a turn. One end of the coil is attached to each half of the commutator. The electric current from the battery connects to the motor's electric terminals. These feed electric power into the commutator through a pair of loose connectors called brushes, made either from pieces of  graphite (soft carbon similar to pencil "lead") or thin lengths of springy metal, which (as the name suggests) "brush" against the commutator. With the commutator in place, when electricity flows through the circuit, the coil will rotate continually in the same direction.

 

A simple, experimental motor such as this isn't capable of making much power. We can increase the turning force (or torque) that the motor can create in three ways: either we can have a more powerful permanent magnet, or we can increase the electric current flowing through the wire, or we can make the coil so it has many "turns" (loops) of very thin wire instead of one "turn" of thick wire. In practice, a motor also has the permanent magnet curved in a circular shape so it almost touches the coil of wire that rotates inside it. The closer together the magnet and the coil, the greater the force the motor can produce.

 

18, Eylül, 2021 Bilgisayar Ağları kategorisinde nnfj555sw (260 puan) tarafından soruldu

Bu soruya cevap vermek için lütfen giriş yapınız veya kayıt olunuz.

...

A Question2Answer database query failed when generating this page.

A full description of the failure is available in the web server's error log file.